BK BIRLA CENTRE FOR EDUCATION
SARALA BIRLA GROUP OF SCHOOLS
SENIOR Secondary Co-Ed DAY CUM BOYS' RESIDENTIAL SCHOOL

Pre board 1 EXAMINATION 2023-24
APPLIED MATHEMATICS (241)

Class: XII Commerce
Date: 21-12-2023

MARKING SCHEME

Duration: 3 Hrs.
Max. Marks: 80

Question	Answer	Scheme
1	When $a \equiv b(\bmod n)$ implies $a-b=k n$ for some $n \in N$. Here, $x-17=k \times 4$ and $x>18$ and ≤ 25. Therefore, the least value that satisfies this statement is $x=21$	Answer B
2	Given $31 \equiv b(\bmod 5)$. this means $31-b=5 \times k$. Here, $31-21=5 \times 2,31-31=5 \times 0 \text { and } 31-16=5 \times 3 .$ Therefore, all these statements are satisfied by b.	Answer D
3	Total number of students $=1000$. Let the number of girls be x. Therefore, 70% of $(1000-x)+80 \%$ of $x=76 \%$ of 1000 Hence $70000-70 x+80 x=76000$ or $10 x=6000$ or $x=600$.	Answer B
4	Amount that pipe A can fill in 1 minute $=\frac{1}{12}$. Amount that pipe B can fill in 1 minute $=\frac{1}{18}$. When both pipes are open, Amount that filled in 1 minute $=\frac{1}{12}+\frac{1}{18}=\frac{5}{36}$ Therefore, time taken to fill the tank is $\frac{36}{5}=7.2$ minutes	Answer C
5	$I=\int \frac{x+3+2-2}{x+5} d x=\int 1-\frac{2}{x+5} d x=x-2 \log (x+5)+c$	Answer B
6	Given $y=x$. Now $\frac{d y}{d x}=1$ and further $\frac{d^{2} y}{d x^{2}}=0$	Answer B
7	Property: sum of all probabilities of elementary events $=1$ Therefore, $0.1+k+2 k+2 k+k=1$ or $6 k=0.9$ and so $k=\frac{0.9}{6}=\frac{9}{60}=0.15$	Answer C
8	A die is thrown 6 times. Let X be a random variable of getting an even number. Probability of success $=\frac{1}{2}$. Therefore, $P(x=2)=6 C_{2} \times\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{2}\right)^{4}=\frac{15}{64}$	Answer B
9	Mean of a random variable $=n p$ and Variance of the random variable is $n p q$. Given $\mathrm{n}=4$ and $p=\frac{1}{3}$. Therefore, mean $=\frac{4}{3}$ and Variance $=\frac{8}{3}$	Answer D
10	A set of observations recorded at an equal interval of time is called Time Series data	Answer D
11	The number of components does a time series data have $=3$	Answer C
12	Mean (μ_{a}) before campaign $=$ Mean $\left(\mu_{b}\right)$ after campaign	Answer A
13	Sum of squares of residuals or errors must be MINIMUM	Answer C
14	Present value of a sequence of payments made at the end of each 6 months @ Rs. 60 is $=P=\frac{R}{i}=\frac{60}{0.02}=$ Rs. 3000	Answer A
15	The common shaded region taking all constraints on a graph sheet is known as Feasible region	Answer D

16	Annual depreciation $=($ cost of the machine - scrap value) / number of life years. Therefore, Annual depreciation $=\frac{40000-8000}{4}=\frac{32000}{4}=R s .8000$	Answer A
17	The total number of samples $=50$ bulbs. 15 bulbs are Bajaj, 17 bulbs are Surya and 18 bulbs are Crompton. The point estimate of population proportion of Surya $=\frac{17}{50}=\frac{34}{100}=0.34$	Answer B
18	Investment on one share of worth Rs. 100 is Rs. 80. Rate of dividend $=12 \%$ Therefore, effective rate of return ERR $=\frac{\text { return }}{\text { investment }} \times 100=\frac{12}{80} \times 100=15 \%$	Answer C
19	Assertion: TRUE. Demand raises on the respective seasons. Reason: TRUE. Seasonal changes are considered within a period of an year	
20	$R(x)=3 x^{2}+36 x+5$. Therefore, marginal revenue $=\frac{d R}{d x}=6 x+36$. The marginal revenue when $x=5$ is $6(5)+36=66 . S o$, Assertion is TRUE. Reason: TRUE and reason supports the assertion statement	Answer A

SECTION - B VERY SHORT ANSWER 2 marks each

21	Data given are $5,8,10,7,10,14$. The point estimation of the population mean $=$ Sum of all observations/number of observations $=\frac{54}{6}=9$ The point estimate of the population standard deviation $=$ $\sqrt{\frac{\sum(x-M)^{2}}{n-1}}=\sqrt{\frac{16+1+1+4+1+25}{5}}=\sqrt{9.6}=3.09$	$\begin{aligned} & 1 \\ & 0.5 \\ & 0.5 \end{aligned}$
22	Let the number of model A products $=\mathrm{x}$ and the number of model B products $=\mathrm{y}$. Now the objective function $z=8000 x+12000 y$ subject to the constraints $9 x+12 y \leq 180$ and $x+3 y \leq 30$. The corner points obtained on the graph are $(20,0),(12,6)$ and $(0,10)$.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
23	$\begin{aligned} & \text { Area of a triangle }=\frac{1}{2}(x 1(y 2-y 3)+x 2(y 3-y 1)+x 3(y 1-y 2)) \\ & =\frac{1}{2}\{3(2-1)-4(1-8)+5(8-2)\}=\frac{1}{2}\{3+28+30\}=\frac{61}{2}=30.5 \text { square units } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.5 \\ 1 \\ 0.5 \\ \hline \end{array}$
OR	Given $A=\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$. Determinant of $A=2 \times 3-4 \times(-2)=14 \neq 0$. Inverse of A exists. Adjugate of $A=\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]$. Hence $A^{-1}=\frac{1}{14}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
24	A defeats B by 60 metres in a race $=A$ defeats B by 12 seconds. Therefore, A runs the race of 60 metres in 12 seconds. So, he takes 1 metre in $1 / 5$ seconds. Total distance covered in the race $=500$ metres The time A has taken to run 500 metres $=500 \times 1 / 5=100$ seconds	$\begin{array}{\|l\|} \hline 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ \hline \end{array}$
OR	A pump fills a tank in 2 hours. Let a leak empties the tank in x hours. Therefore, quantity of tank filled in 1 hour $=$ $\frac{1}{2}-\frac{1}{x}=\frac{3}{7}$ or $\frac{x-2}{2 x}=\frac{3}{7}$ or $7 x-14=6 x$ or $x=14$ Hence the leakage empties the tank in 14 hours if kept open alone.	1 1
25	Present value of perpetuity $P=\frac{R}{i}$ or $i=\frac{R}{P}$ or $\frac{r}{100}=\frac{R}{P}=\frac{500}{10000}$. therefore, $r=10 \%$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

SECTION - C SHORT ANSWER 3 marks each

26
Cost of new house = Rs.4500000; down payment = Rs. 500000 ; loan $=$ Rs. 4000000 Therefore, $E M I=\frac{P \times i \times(1+i)^{n}}{(1+i)^{n}-1}$
$E M I=\frac{4000000 \times 0.005 \times(1.005)^{300}}{(1.005)^{300}-1}=\frac{20000 \times 4.4650}{3.4650}=\frac{89300}{3.4650}=$ Rs. 25772

27	Apply partial fraction: $\frac{2 x+1}{(x+1)(x-2)}=\frac{A}{x+1}+\frac{B}{x-2}$; we simplify $\begin{aligned} & 2 x+1 \equiv A(x-2)+B(x+1) \\ & \int \frac{\frac{1}{3}}{x-2}+\frac{\frac{5}{3}}{x+1} d x=\frac{1}{3} \log (x-2)+\frac{5}{3} \log (x+1)+c \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
OR	Apply partial fraction of integration: $\frac{3 x-2}{(x+1)(x-2)^{2}}=\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}$. Therefore, $3 x-2 \equiv A(x-2)^{2}+B(x+1)(x-2)+C(x+1)$. Find A, B and C values $\int \frac{-\frac{5}{9}}{x+1}+\frac{\frac{5}{9}}{x-2}+\frac{\frac{4}{3}}{(x-2)^{2}} d x=-\frac{5}{9} \log (x+1)+\frac{5}{9} \log (x-2)-\frac{\frac{8}{3}}{(x-2)}+c$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \\ & 1 \end{aligned}$
28	Sinking fund amount $=$ Rs. 1000000 ; number of years $=10 ; r=5 \%$ compounded semi annually. Monthly deposit = $R=\frac{A \times i}{(1+i)^{n}-1}=\frac{1000000 \times 0.025}{(1.025)^{20}-1}=\frac{25000}{1.6386-1}=R s .39148$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
29	Definite integral: $\int_{1}^{4}\|x-5\| d x=\int_{1}^{4}-x+5 d x=-\frac{x^{2}}{2}+5 x=-8+20+\frac{1}{2}-5=7.5$ Because of the turning point is 5 , the given interval is below it and hence it has only one definite integral part.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
OR	The demand function $D(x)=100-8 x$. Given when $p_{0}=4$,therefore $4=100-8 x_{0}$. so, $x_{0}=12$. Therefore, consumer surplus $=$ $\int_{0}^{\int_{0}^{x_{0}}} D(x) d x-x_{0} p_{0}=$ $\int_{0}^{12} 100-8 x d x-12 \times 4=100 x-\frac{8 x^{2}}{2}-48=1200-4 \times 144-48=576$	1 1
30	The equation formed are: $4 x+3 y+2 z=60 ; 2 x+4 y+6 z=90 \text { and } 6 x+2 y+3 z=70$ The coefficient matrix $=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right]$ and $\Delta=4(12-12)-3(6-36)+2(4-24)=10$ Cofactor matrix of $\mathrm{A}=\left[\begin{array}{ccc}0 & 30 & -20 \\ -5 & 0 & 10 \\ 10 & -20 & 10\end{array}\right]$. The solution of the linear equations: $X=A^{-1} \times B$ $=\frac{1}{10}\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right] \times\left[\begin{array}{l}60 \\ 90 \\ 70\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}250 \\ 400 \\ 400\end{array}\right]$. Solution are $x=$ Rs. $25 ; y=$ Rs. $40 ; z=$ Rs. 40	1 1 1
31	Given $y=x^{3} \log x$. First derivative: $\frac{d y}{d x}=x^{3} \times \frac{1}{x}+\log x \times 3 x^{2}=x^{2}+3 x^{2} \log x$ Second derivative: $\frac{d^{2} y}{d x^{2}}=2 x+3 x^{2} \times \frac{1}{x}+\log x \times 6 x=2 x+3 x+6 x \log x=5 x+6 x \log x$	1 1 1

SECTION - D LONG ANSWER TYPE 5 marks each

32	Volume of the tank $=4000$ cubic $\mathrm{cm} . V=x^{2} y$ or $y=\frac{4000}{x^{2}}$	1
	Surface area of the tank with square bottom $=S=x^{2}+4 x y=x^{2}+4 x \times \frac{4000}{x^{2}}$	
$=\frac{d s}{d x}=2 x+16000 \times-\frac{1}{x^{2}}=2 x-\frac{16000}{x^{2}}$. If $\frac{d s}{d x}=0$ then $x^{3}=8000$ and so $x=20 \mathrm{~cm}$		
Therefore, dimensions of the tank are $l=20 \mathrm{~cm}, b=20 \mathrm{~cm}$ and $h=20 \mathrm{~cm}$	1	
		1

OR	The equation of the curve is $y^{2}=2 x$ and the point is (1,4). Differentiating with respect to x , we get $2 y \frac{d y}{d x}=2$ or $\frac{d y}{d x}=\frac{1}{y}$. Therefore, slope of the normal $=-y$. Now equation of the line passing through $(1,4)$ with slope $-y$ is $y-4=-y(x-1)$. Now solving the curve we get $y-1=-y\left(\frac{y^{2}}{2}-1\right)$ or $2 y-8=-y^{3}+2 y$ or $y^{3}=8$ and hence $y=2, x=2$. Therefore, the nearest point is $(2,2)$	1
33	Let $\mathrm{X}=$ age among adults in a region; $\mu=8 ; \sigma=5$. $\mathrm{n}=$ number of adults $=100$ For $x=10, z=\frac{10-\mu}{\sigma}=\frac{10-8}{5}=\frac{2}{5}=0.4$ For $x=14, z=\frac{14-\mu}{\sigma}=\frac{14-8}{5}=\frac{6}{5}=1.2$ therefore, $\mathrm{P}(10<\mathrm{X}<14)=\mathrm{P}(0.4<\mathrm{Z}<1.2)=\mathrm{F}(1.2)-\mathrm{F}(0.4)=0.8849-0.6554=0.2295$ Number of adults in the age group between 10 and 14 years $=0.2295 \times 100=22.95 \approx 23$ $P(X>14)=P(Z>1.2)=1-P(Z \leq 1.2)=1-0.8849=0.1151$ Number of adults in the age more than 14 years $=0.1151 \times 100=11.51 \approx 12$ adults	1
OR	Poisson distribution: probability of a bucket produced is defective $p=0.03$ Number of buckets produced $n=100$. Therefore, $\lambda=n p=100 \times 0.03=3$ $\mathrm{P}($ zero defective bucket $)=P(X=0)=\frac{e^{-3} \times 3^{0}}{0!}=\frac{0.049 \times 1}{1}=0.049$ $\mathrm{P}($ at most one defective bucket $)=P(X \leq 1)=P(0)+P(1)=0.049+\frac{e^{-3} \times 3^{1}}{1!}$ Therefore, $P(X \leq 1)=0.049+0.049 \times 3=0.049+0.147=0.196$	1
34	$\begin{aligned} & \text { At }(0,3), z=22 \times 0+44 \times 3 \\ & Z=132 \\ & \text { At }(1.5,1.5), z=22 \times 1.5+44 \times 1.5 \\ & Z=33+66=99 \\ & \text { At }(2.182,2.182) \\ & Z=22 \times 2.182+44 \times 2.182 \\ & =48.004+96.008=144.012 \\ & \text { Maximum of } z=144 \text {. The solution } \\ & \text { region is bounded between }(0,3) \text {, } \\ & (1.5,1.5) \text { and }(2.182,2.182) \end{aligned}$	1 1 1 1 1
OR	 At $(15,0)$, $\begin{aligned} & Z=18 \times 15+10 \times 0=270 \\ & \text { At }(3,8), z=18 \times 3+10 \times 8=54+80=134 \\ & \text { At }(0,20), z=18 \times 0+10 \times 20=200 \end{aligned}$ Minimum of these z values is 134 and at $(3,8)$.	1 1 1 1

The linear equations formed are: $x+y+z=20 ; 2 x+y-z=23 ; 3 x+y+z=46$.
Determinant of coefficients $=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 1 & 1\end{array}\right|=(1(1+1)-1(2+3)+1(2-3)=-4$
Now $\Delta_{1}=\left|\begin{array}{ccc}20 & 1 & 1 \\ 23 & 1 & -1\end{array}\right|=20(1+1)-1(23+46)+1(23-46)=40-69-23=-52$
Now $\Delta_{2}=\left|\begin{array}{ccc}1 & 20 & 1 \\ 2 & 23 & -1 \\ 3 & 46 & 1\end{array}\right|=1(23+46)-20(2+3)+1(92-69)=69-100+23=-8$
Now $\Delta_{3}=\left|\begin{array}{lll}1 & 1 & 20 \\ 2 & 1 & 23 \\ 3 & 1 & 46\end{array}\right|=1(46-23)-1(92-69)+20(2-3)=23-23-20=-20$
Therefore, $x=\frac{\Delta_{1}}{\Delta}=-\frac{52}{-4}=13 ; y=\frac{\Delta_{2}}{\Delta}=-\frac{8}{-4}=2 ; z=\frac{\Delta_{3}}{\Delta}=-\frac{20}{-4}=5$

SECTION - E CASE STUDY QUESTIONS 4 marks each

36a	The amount filled when pipe A and pipe B are both opened, in 1 hour $=\frac{1}{6}+\frac{1}{8}=\frac{7}{24}$ Time taken to fill, when both pipe A and B are opened is $\frac{24}{7}=3 \frac{3}{7}$ hours	1
36b	The amount filled when pipe A and pipe C are both opened, in 1 hour $=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}$ Time taken to fill, when both pipe A and C are opened is 12 hours	1
36c	The amount filled when pipe B and C are both opened, in 1 hour $=\frac{1}{8}-\frac{1}{12}=\frac{1}{24}$ Time taken to fill, when both pipe B and C are opened is 24 hours	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
OR	The amount filled when all three pipes are opened, in 1 hour $=\frac{1}{6}+\frac{1}{8}-\frac{1}{12}=\frac{5}{24}$ Time taken to fill, when all three pipes are opened is $\frac{24}{5}=4 \frac{4}{5}$ hours	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
37a	Sum of all probabilities $=1$. Therefore, $0.1+k+2 k+2 k+k=1$ or $k=\frac{0.9}{6}=0.15$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
37b	$\mathrm{P}($ studies for three hours $)=P(x=3)=k(5-3)=2 k=2 \times 0.15=0.3$	1
37c	$\mathrm{P}($ studies for two hours) $=P(x=2)=k \times 2=2 \times 0.15=0.3$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
OR	$\begin{aligned} & \text { P(studies at least two hours })=P(x \geq 2)=1-P(x<2)=1-\{P(0)+P(1)\} \\ & =1-\{0.1+0.15\}=0.75 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
38a	The forecast for the year 2006 for Urban group is $y=23+6.9 \times 2006$ $=23+13841.4=13864.40$	$\begin{array}{\|l\|} \hline 0.5 \\ 0.5 \\ \hline \end{array}$
38b	The forecast for the year 2006 for Rural group is $y=11.6+5.2 \times 2006$ $=11.6+5.2 \times 2006=11.6+10431.2=10442.80$	$\begin{array}{\|l\|} \hline 0.5 \\ \hline 0.5 \\ \hline \end{array}$
38c	The trend line by the method of least squares for Rural Indians group Is $y=11.6+5.2 x$	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$
OR	The trend line by the method of least square for Urban Indians group Is $y=23+6.9 x$	$\begin{array}{\|l} \hline 1 \\ 1 \\ \hline \end{array}$

