BK BIRLA CENTRE FOR EDUCATION
 SARALA BIRLA GROUP OF SCHOOLS
 Senior Secondary co-ed day cum boys' residential school, Shirgaon
 MID-TERM EXAMINATION 2023-24
 MATHEMATICS (041)

Duration: 3 Hrs
Max. Marks: 80

MARKING SCHEME

Question	Answer	Scheme
1	$3 \sqrt{8}=3 \times 2 \sqrt{2}=$ irrational	B
2	$\sqrt{2}+\sqrt{3}$ remains irrational. But $\sqrt{2}+(-\sqrt{2})=0$ becomes rational	C
3	Coefficient of x^{2} in the given polynomial is $-\frac{\pi}{2}$	C
4	$f(2)=0 \text { implies } f(2)=2^{3}-3 \times 2+5 a=0 ; \therefore 8-6+5 a=0, \text { So } a=-\frac{2}{5}$	D
5	Any point in the $3^{\text {rd }}$ quadrant has both coordinates negative.	D
6	It lies on the axis between $3^{\text {rd }}$ quadrant and $4^{\text {th }}$ quadrant.	B
7	Parallel to the x -axis	A
8	Both components have to be same. Therefore, (1,) is the answer	C
9	They are known as co-interior angles. They are supplementary.	B
10	Both x and y are equal. Because they are alternate interior angles. $\angle x=\angle y=130^{0}$	C
11	The value of $\frac{3 \sqrt{4 \times 3}}{6 \sqrt{3 \times 3 \times 3}}=\frac{3 \times 2 \times \sqrt{3}}{6 \times 3 \times \sqrt{3}}=\frac{2}{6}=\frac{1}{3}$	D
12	To rationalise the denominator we have to multiply by $\frac{a-\sqrt{b}}{a-\sqrt{b}}$	D
13	The zero of the polynomial $p(x)=9 x+4$ is $x=-\frac{4}{9}$	C
14	Area of an equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}=16 \sqrt{3}$. Therefore, $a^{2}=64$, that is $a=8$ Perimeter of the triangle $=8+8+8=24 \mathrm{~cm}$	B
15	$\begin{aligned} & \mathrm{S}=\frac{5+12+13}{2}=15 ; \text { Area }=\sqrt{15(15-5)(15-12)(15-13)}=\sqrt{15 \times 10 \times 3 \times 2} \\ & =\sqrt{900}=30 \text { square centimetre } \end{aligned}$	B
16	The point which lies on the y-axis and whose ordinate 4 is (0,4)	B
17	We use corresponding angles; vertically opposite angles; Now angles at the point on L 2 is $=37+58+x=180 ; \therefore x=180-95=85^{\circ}$	B
18	An equation in two variables has infinitely many solutions.	D
19	In fourth quadrant the ordered pair is $(+,-)$. Therefore, the statement is true In second quadrant the ordered pair is $(-,+)$. Therefore, the statement is true Reason is not in support of Assertion	B
20	Assertion : TRUE, Reason: FALSE	C

23	$(3 a+2 b+4 c)^{2}=9 a^{2}+4 b^{2}+16 c^{2}+12 a b+16 b c+24 c a$	2
OR	$P(x)$ is divided by $(x-a)$. Now $P(a)=a^{3}-a \times a^{2}+6 a-a=5 a$ The remainder is 5a.	1
24	Given $y=3 x+20$. Two angles are not supplementary. So, $x+y=180$ becomes $x+3 x+20=180 ; 4 x=180-20=160 . S o, x=40^{0}$	1
OR	To find 3 rational numbers between 3 and 4 we have to multiply and divide by 4 both the numbers. We get $\frac{12}{4}$ and $\frac{16}{4}$. In between we have $\frac{13}{4}, \frac{14}{4}, \frac{15}{4}$.	1
25	Draw a line through R parallel to PQ and ST. Angles at the vertex R are all supplementary.	1

26	Rationalize: $\frac{5}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{5(\sqrt{5}+\sqrt{3})}{5-3}=\frac{5}{2}(\sqrt{5}+\sqrt{3})$	1 1 1	
27	$x-1$ is a factor. Therefore, put $x=1$ in the polynomial. $P(1)=k(1)^{2}-3(1)+k=0 ; 2 k-3=0 ; s o, k=\frac{3}{2}$	1 1 1	
OR	Write in perfect square form: $\left(\frac{5 x}{2}\right)^{2}-\left(\frac{y}{3}\right)^{2}=\left(\frac{5 x}{2}+\frac{y}{3}\right)\left(\frac{5 x}{2}-\frac{y}{3}\right)$	1 1 1	
28	To find the point on x -axis, put $\mathrm{y}=0$ in the equation. Therefore $2 x=12$ and so $x=6$. $(6,0)$ To find the point on y -axis, put $\mathrm{x}=0$ in the equation. Therefore, $3 y=12$ and so $y=4 .(0,4)$	1 1 1	
29	In right triangle, $\angle y+43=90 ; \therefore \angle y=90-43=47^{\circ}$ Now $\angle x+53=65+47$ exterior angle theorem; Therefore, $\angle x=112-53=59^{0}$	1 1 1	
30	Given $\angle B A E=\angle C A E . U \operatorname{sing}$ angles sum property, $(\angle B+\angle C+\angle A=180)$; Now $60+35+\angle A=180 ; \therefore \angle B A C=180-95=85^{\circ}$ Further $\angle E A C+\angle E C A=\angle B E A ; \therefore \angle B E A=42.5+35=77.5$ In right triangle DAE, $\angle D A E+\angle D E A=90 ; \therefore \angle D A E=90-77.5=12.5^{\circ}$	1 1 1	
31	$3 x+5 x+7 x=300 ; 15 x=300 ; x=20$. Therefore, sides are $60,100,140$ and $s=150$ Now Area $=\sqrt{150(150-60)(150-100)(150-140)}=\sqrt{150 \times 90 \times 50 \times 10}$ Area $=100 \sqrt{5 \times 3 \times 3 \times 3 \times 5}=1500 \sqrt{3} \mathrm{~m}^{2}$	1 1 1	
OR	Since AB \\|CD, sum of the co-interior angles is 180 degrees. Therefore, $y+2 y+y+5 y=180$; so $9 y=180$; therefore, $y=20$	1	

SECTION - D

32	Perimeter of the triangle $=32 \mathrm{~cm}$ Therefore,$s=16$, the third side $=32-(8+11)=13 \mathrm{~cm}$ Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{16(16-8)(16-11)(16-13)}$ $=\sqrt{16 \times 8 \times 5 \times 3}=8 \sqrt{30}$ square centimetre	1
	1	

33	In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ} ; \angle A+2 x+2 y=180^{\circ}$; Therefore, $x+y=90-\frac{\angle A}{2}$. Given BO and CO are angle bisectors at vertices B and C respectively. Now in $\triangle B O C, \angle B+\angle B O C+\angle C=180^{\circ}$; or $x+\angle B O C+y=180$ Therefore, $\angle B O C=180-(x+y)=180-\left(90-\frac{\angle A}{2}\right)=90+\frac{\angle A}{2}$. Hence proved	1 1 1 1 1	
OR	Check $l \\| m$ in each case. Figure (1);126+44=170 $=180$; co-interior angles are not supplementary. False Figure (2); alternate interior angles are equal. Therefore, lines are parallel Figure (3); vertically opposite angles; co-exterior angles are supplementary. Because $123+57=180$ Figure (4); vertically opposite angles; co-exterior angles are not supplementary. Because 98+72=170	1 1 1 1 1	
34	These points $(1,2),(-1,-16)$ and $(0,-7)$ satisfy the equation $y=9 x-7$. Show them by substitution and confirm. Draw the graph of the equation and check these points Actually lie on the line.	1 1 1 1 1	
35	Expansion of $\left(4-\frac{x}{3}\right)^{3}=4^{3}-3 \times 4^{2} \times \frac{x}{3}+3 \times 4 \times \frac{x^{2}}{9}-\frac{x^{3}}{27}=64-16 x+\frac{4 x^{2}}{3}-\frac{x^{3}}{27}$ Expansion of $\left(3 a+\frac{b}{3}\right)^{3}=(3 a)^{3}+3 \times(3 a)^{2} \times \frac{b}{3}+3 \times 3 a \times \frac{b^{2}}{9}+\frac{b^{3}}{27}$ $=27 a^{3}+9 a^{2} b+a b^{2}+\frac{b^{3}}{27}$	1 1 1 1 1	
OR	Factorize: $1+64 x^{3}=(1+4 x)\left(1-4 x+16 x^{2}\right)$ Factorize: $a^{3}-2 \sqrt{2} b^{3}=(a-\sqrt{2} b)\left(a^{2}+\sqrt{2} a b+2 b^{2}\right)$	2.5 2.5	

SECTION - E

36 a	Coordinates of Ashok's ball $=(3,4)$	1
36 b	Coordinates of Deepak's ball $=(-4,4)$	1
36 c	Abscissa of Deepa's ball $=2$ Ordinate of Arjun's ball $=-3$	1
OR	Ashok's ball $=(3,4)$ in first quadrant Deepak's ball $=(-4,4)$ in second quadrant Arjun's ball $=(-3,-3)$ in third quadrant Deepa's ball $=(2,-3)$ in fourth quadrant	1
37 a	Vertically opposite angles are equal. Therefore, $x=4 y=4 \times 24=96^{0}$ On line AB, $4 y+60+y=180 ;$ or $5 y=180-60 ; 5 y=120$ or $y=24^{0}$	0.5
37 b	On line $\mathrm{AB}, 4 y+60+y=180 ;$ or $5 y=180-60 ; 5 y=120$ or $y=24^{0}$	0.5
37 c	Relation between y and $z: 4 y+2 z=180 ; 96+2 z=180 ; 2 z=180-96=84^{0}$ Therefore, $z=42 ;$ or $z=y+18$	0.5
OR	Set of angles forming supplementary angles are: $(4 y, 2 z),(2 z, x),(x, y, 60)$ and $(y, 60,4 y)$ There are 4 such groups that could form supplementary angles on the whole	1
38 a	Option (B) is not a polynomial. In second term the exponent on the variable is negative	1
38 b	It is a quadratic polynomial as its degree is 2.	1
38 c	Now $p(1)=4(1)^{3}+3(1)^{2}-4(1)+k=0$ implies $k=-3$	1
OR	The factors of polynomial $x^{2}-1$ are $(x-1)$ and $(x+1)$	1

