MARKING SCHEME CHEMISTRY (043)
Class: XI
Date: 16/10’23

INDIAN PUBLIC SCHOOLS' CONFERENCE

Duration: 3 Hrs
Max. Marks: 70

SECTION A

The following questions are multiple -choice questions with one correct answer. Each question carries 1-mark. There is no internal choice in this section.

1. (d) 6×10^{23}
2. (b) $1.99 \times 10^{-23} \mathrm{~g}$
3. (a) An element
4. (d) 25
5. (d) y-rays
6. (c) 3
7. (c) Electron $3>$ Electron $2>$ Electron $4>$ Electron 1
8. (c) $\mathrm{X}_{2} \mathrm{O}_{3}$, amphoteric
9. (d) 2
10. (c) $n s^{2} n p^{5}$
11. (b) $A_{2} B_{3}$
12. (d) 4

Directions: The questions below consists of an assertion and a reason. Use the following key to choose the appropriate answer.
(a) If both assertion and reason are correct and reason is correct explanation of the assertion.
(b) If both assertion and reason are correct, but the reason is not the correct explanation of the assertion.
(c) If assertion is correct, but reason is incorrect.
(d) If assertion is incorrect, but reason is correct.
13. Answer: (d)
14. Answer: (c)
15. Answer: (d)
16. Answer: (a)

SECTION B

This section contains 5 questions with internal choice in one question. The following questions are very short answer type and carry $\mathbf{2}$ marks each.

17. Solution

Given,ss of A added=2 g
Mass of water $=18 \mathrm{~g}$
Mass of solution $=2 \mathrm{~g}+18 \mathrm{~g}=20 \mathrm{~g}$

We know,
Mass percent of $\mathrm{A}($ solute $)=$ Mass of A Mass of solution $\times 100$
$=2 \mathrm{~g} / 2 \mathrm{~g}$ of $\mathrm{A}+18 \mathrm{~g}$ of water $\times 100$
$=2 \mathrm{~g} / 20 \mathrm{~g} \times 100=10 \%$
Final Answer: 10\%
18. Molar mass of water $(\mathrm{H} 2 \mathrm{O})=2+16=18 \mathrm{u}$.

Molar mass of HNO3 $=1+14+(3 \times 16)$
Molar mass of HNO3 $=1+14+48=63 \mathrm{~g} / \mathrm{mol}$.
19. Here, $\lambda=3.6 \times 10-10 \mathrm{~m}$

We know, de-Broglie wavelength
$\lambda=h p \Rightarrow \lambda=h m v \Rightarrow m=h \lambda v$
Now,
$\lambda=3.6^{\circ} \mathrm{A}=3.6 \times 10-10 \mathrm{~m}$
Velocity of photon = Velocity of light
$m=h \lambda v=6.626 \times 10-34 \mathrm{Js}-1(3.6 \times 10-10 \mathrm{~m})(3 \times 108 \mathrm{~ms}-1)$
$=6.135 \times 10-29 \mathrm{~kg}$

OR

Given: mass of the ball $(\mathrm{m})=0.1 \mathrm{~kg}$
velocity of the ball $(\mathrm{v})=10 \mathrm{~m} \mathrm{sec}-1$
Calculation for wavelength of the ball
\because We know from de-Broglie equation: $\lambda=\mathrm{h} / \mathrm{mv}$
Where, $\lambda=$ wavelength of the particle $=$?
$h \rightarrow$ Planck's constant $=6.626 \times 10-34 \mathrm{Js}$
$\mathrm{m} \rightarrow$ mass of the particle $=0.1 \mathrm{~kg}$
$v \rightarrow$ velocity of the particle=10 ms-1
Substituting the values, we get
$\lambda=6.626 \times 10-34 \mathrm{~J} \mathrm{sec} / 0.1 \mathrm{~kg} \times 10 \mathrm{~m} \mathrm{sec}-1$
$\Rightarrow \lambda=6.626 \times 10-34 \mathrm{~m} \quad\{F=m a=k g \times m s e c 2 ; W=F . d x=k g \times m 2 s e c 2=J\}$
Final answer : wavelength of the ball $(\lambda)=6.626 \times 10-34 \mathrm{~m}$.
20. Atomic radius is defined as a distance from the centre of the nucleus to the outermost shell containing the electrons. Ionic radius is a measure of an atoms ion in a crystal lattice and which is a half distance between two ions that are barely touching each other.

- $\mathbf{H}_{\text {(iii) }}=\mathbf{H}^{-}$
(a) S and S^{2-}
(b) Al and Al^{3+}

SECTION C

This section contains 7 questions with internal choice in one question. The following questions are short answer type and carry 3 marks each.
22.

Answer:

(i) 1 mole of $\mathrm{C}_{2} \mathrm{H}_{8}$ contains 2 moles of carbon atoms.
\therefore Number of moles of carbon atoms in 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$

$$
=2 \times 3=6
$$

(ii) 1 mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 6 moles of hydrogen atoms.
\therefore Number of moles of carbon atoms in 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$
$=3 \times 6=18$
(iii) 1 mole of $\mathrm{C}_{2} \mathrm{H}_{6}$ contains 6.023×10^{23} molecules of ethane.
\therefore Number of molecules in 3 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$
$=3 \times 6.023 \times 10^{23}=18.069 \times 10^{23}$
23. (a) Explanation: 1 mole of He contains $6.023 \times 10^{\wedge} 23$ atoms. 1 mole of $\mathrm{He}=4 \mathrm{gm}$ of He . $\mathrm{So}, 24 \mathrm{gm}$ of He contains $-(24 \div 4) \times 6.023 \times 10^{\wedge} 23$ atoms $=36.138 \times 10^{\wedge} 23 \mathrm{He}$ atoms.

1 mole of CuSO_{4} contains 1 mole of copper.
Molar mass of $\mathrm{CuSO}_{4}=(63.5)+(32.00)+4(16.00)$
$=63.5+32.00+64.00$
$=159.5 \mathrm{~g}$
159.5 g of CuSO_{4} contains 63.5 g of copper.
$\Rightarrow 100 \mathrm{~g}$ of CuSO_{4} will contain $\frac{63.5 \times 100 \mathrm{~g}}{159.5}$ of copper.
\therefore Amount of copper that can be obtained from $100 \mathrm{~g} \mathrm{CuSO}_{4}=\frac{63.5 \times 100}{159.5}$
(b) $=39.81 \mathrm{~g}$
24.
(a) lithium (Li).
(b) Phosphorus
(c) Scandium
25.

Solution

I) $\mathrm{E}=\mathrm{h} \nu=\mathrm{hc} / \lambda=6.626 \times 10-34 \times 3 \times 108 / 4 \times 10-7$
$=4.97 \times 10-19 \mathrm{~J}$
$=4.97 \times 10-19 / 1.6 \times 10-19=3.1 \mathrm{eV}$
ii) kinetic energy of emission,
$=h \nu-h v 0=3.1-2.13=0.97 \mathrm{eV}$
iii) $1 / 2 \mathrm{mv} 2=0.97 \mathrm{eV}=0.97 \times 1.6 \times 10-19$
$1 / 2(9.11 \times 10-31) \times v 2=0.97 \times 1.6 \times 10-19$
$\mathrm{v} 2=34.1 \times 10_{10}$
$\mathrm{v}=5.84 \times 105 \mathrm{~ms}-1$
26.
(a) (a) All the given species contain same number of electrons (10). Hence, they are isoelectronic species. With increase in the nuclear charge, the ionic size decreases.
(b) The increasing order of ionic radii is $\mathrm{Al} 3+<\mathrm{Mg} 2+<\mathrm{Na}+<\mathrm{F}-<\mathrm{O} 2-<\mathrm{N} 3-$.

OR

Metals

They are solid at room temperature.

They have high melting and boiling points.

They are good conductors of heat and electricity.

Non-metals

They may be solid, liquid and gas at room temperature.

They have low melting and boiling points.

They are bad conductors of heat and electricity.
27. A sigma bond is stronger than the pi bond due to a greater and stronger overlap of orbitals. The strength of the bond depends upon the bond length as well. The greater the bond length, the weaker the bond is. A sigma bond is stronger than the pi bond due to the shorter bond length. Sigma bonds (σ) are the first type of covalent bond, formed by overlap of atomic orbitals head-to-head. They are found in single, double, and triple bonds. Pi bonds (π) are the second and third types of covalent bonds, formed by overlap of p orbitals side-to-side. They only exist in double and triple bonds.
28.

(b) NO_{2} :

(c) NO_{3}^{-}

The following questions are case -based questions. Each question has an internal choice and carries $4(1+1+2)$ marks each. Read the passage carefully and answer the questions that follow.
29. (a) Microscopic.
(b) n
(c) Azimuthal quantum number, Size OR
Using s, p, d, f notations, describe the orbital with the following quantum numbers.
(i) $2 p$
(ii) $5 f$
30.
(a) Periods
(b) Atomic number
(c) Unnilseptium and Ununbium.

OR

18- groups and 7-periods in modern periodic table.

SECTION E

The following questions are long answer type and carry 5 marks each. All questions have an internal choice.
31. (a) Which out of NH3 and NF3 has higher dipole moment and why?
(b) Describe the shapes of $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$ hybrid orbitals.

OR

(a) Explain the types of H -Bonds.
(b) Discuss the shape of the following molecules using the VSEPR model:

```
BeCl2, BCl3},\mp@subsup{\textrm{PH}}{3}{
```

32. (a) The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according to their atomic number (number of protons) and their properties respectively. This arrangement makes the study of elements and their compounds simple and systematic.
(b) The ionization enthalpy is the amount of energy required to remove an electron from ground state to infinity. The energy of electron in the ground state is $-2.18 \times 10-18 \mathrm{~J}$.

The energy of electron at infinity is zero.
The energy required to remove electron is $0-(-21.8 \times 10-18 \mathrm{~J})=2.18 \times 10-18 \mathrm{~J}$.

To remove 1 mole of electrons, the amount of energy required is $2.18 \times 10-18 \times 6.023 \times 1023=13.130 \times 105 \mathrm{~J} / \mathrm{mol}$. This is the ionization enthalpy of hydrogen.

OR

(a) (i) Nitrogen is an element with five electrons in its outershell.
(ii) Magnesium is an element which tends to lose two electrons.
(iii) Oxygen is an element that would tend to gain two electrons.
(b) (i) For $n=3$, the period in which the element belongs is third. The electronic configuration is 3 s 23 p 4 and the element belongs to p block. The group number of the element is $10+$ number of electrons in the valence shell.
$=10+6=16$
Thus, the element belongs to third period and sixteenth group.
(ii) For $\mathrm{n}=4$, the period in which the element belongs is fourth. The electronic configuration is 3 d 24 s 2 and the element belongs to d block. The group number of the element is = number of electrons in
the ($\mathrm{n}-1$) d subshell + number of electrons in ns subshell $=2+2=4$
Thus, the element belongs to fourth period and fourth group.
33. Attempt any five of the following:
(a) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$ or $[A r] 4 s^{2}$
(b) $h v=h v_{0}+1 / 2 m_{e} v^{2}$
(c) Hence, the number of photons with a wavelength of 4000 pm and energy of 1 J are 2.012×10^{16}.
(d) $[\mathrm{Ne}] 3 \mathrm{~s}^{1}$.
(e) 16

$$
\begin{aligned}
\text { (f) } \lambda & \lambda=\mathrm{h} /(2 \mathrm{mK} . \mathrm{E})^{1 / 2} \\
\lambda & =6.626 \times 10-34 /(2 \times 9.1 \times 10-31 \times 3 \times 10-25) 1 / 2=1.2 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

(g) Pauli's Exclusion Principle states that no two electrons in the same atom can have identical values for all four of their quantum numbers..

*** Best of luck***

