

1

BK BIRLA CENTRE FOR EDUCATION SARALA BIRLA GROUP OF SCHOOLS

SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

MID-TERM EXAMINATION 2023-24

MATHEMATICS (041)

Class: XII Science Date: 13-10-2023 Admn:

General Instructions:

- 1 This question paper has 5 sections A, B, C, D and E.
- 2 Section A has 20 MCQs carrying 1 mark each.
- 3 Section B has 5 questions carrying 2 marks each.
- 4 Section C has 6 questions carrying 3 marks each.
- 5 Section D has 4 questions carrying 5 marks each
- 6 Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values 1, 1 and 2 marks each respectively.
- 7 All questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2Qs of 3 marks and 2 Qs of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8 Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

If
$$f: R \to R$$
 be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$ then $fof(x)$ is
(A) $x^{\frac{1}{3}}$ (B) x^3 (C) x (D) $(3 - x^3)$

- 2 A relation R is defined from $\{2, 3, 4, 5\}$ to $\{3, 6, 7, 10\}$ by $xRy \Leftrightarrow x$ is relatively prime to y. The domain of R is
 - (A) $\{2, 3, 5\}$ (B) $\{3, 5\}$ (C) $\{2, 3, 4\}$ (D) $\{2, 3, 4, 5\}$
- 3 If $f: R \to A$ given by $f(x) = x^2 2x + 2$ is a surjective function, then the set A is (A) $(1, \infty)$ (B) $[1, \infty)$ (C) $(-\infty, 0)$ (D) $(0, \infty)$

4 If
$$y = \sin(\cot^{-1}x)$$
 then y is equal to
(A) $(1 + x^2)^{\frac{1}{2}}$ (B) $(1 + x^2)^{-\frac{3}{2}}$ (C) x (D) $(1 + x^2)^{-\frac{1}{2}}$

5 If
$$sin^{-1}x = \frac{\pi}{5}$$
, $x \in [-1, 1]$ then $cos^{-1}x$ is
(A) $\frac{3\pi}{10}$ (B) $\frac{5\pi}{10}$ (C) $-\frac{3\pi}{10}$ (D) $\frac{9\pi}{10}$

Duration: 3 Hrs Max. Marks: 80 Roll number: ____

6 If
$$\sin^{-1}x = y$$
 then
(A) $0 \le y \le \pi$ (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (C) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
7 Let $A = \begin{bmatrix} a & b & c \\ g & h & i \end{bmatrix} = 4$ then |adj A|=
(A) 16 (B) 2 only (C) 4 only (D) 8
8 If A and B are square matrices of order n such that $A^2 - B^2 = (A - B)(A + B)$ then which of the following statement is true?
(A) either A or B is a null matrix (B) $A = B$
(C) $AB = BA$ (D) None of these
9 The order of $\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} m \\ n \\ p \end{bmatrix}$ is
(A) 3×1 (B) 1×3 (C) 1×1 (D) 3×3
10 which of the following is correct:
(A) Determinant is a square matrix
(B) Determinant is a square matrix
(C) Determinant is a number associated to a matrix
(C) Determinant is a number associated to a square matrix (D) None of these
11 The product of a matrix and its transpose is an identity matrix. The determinant of this matrix is
(A) 0 (B) 1 (C) -1 (D) ± 1
12 If A and B are square matrices of order 3 such that $|A| = -1$ and $|B| = 3$, then the determinant of $3AB$ is
(A) 9 (B) 81 (C) -81 (D) -9
13 The derivative of $tan^{-1}(cosec x + \cot x)$ is equal to
(A) $-1/2$ (B) -1 (C) 0 (D) 2
14 Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing
(A) $(-\infty, 2) \cup (2, \infty)$ (B) $(2, \infty)$
(C) $(-\infty, 2] \cup (2, \infty)$ (C) $(-\infty, 2] \cup [2, \infty)$
15 If $y = \log \cos e^x$ then $\frac{dy}{dx}$ is:
(A) $\cos e^{x-1}$ (B) $e^{-x} \cos e^x$ (C) $e^x \sin e^x$ (D) $-e^x \tan e^x$
16 The least value of the function $f(x) = 2 \cos x + x$ in the closed interval $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ is
(A) 2 (B) $\frac{\pi}{6} + \sqrt{3}$ (C) $\frac{\pi}{2}$ (D) does not exist
 $CL_{125C_{1}MID_{1}EM_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{1}P_{2}D_{2}D_{1}P_{2}D_{2}D_{1}P_{2}D_{2}D_{1}P_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{1}P_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{2}D_{1}D_{2}D_{1}D_{1}P_{2}D_{2}D_{1}D_{1}D_{2}D_{2}D_{1}D_{1}P_{2}D_{2}D_{2}D_{1}D_$

17 If
$$y = 5 \cos x - 3 \sin x$$
 then $\frac{d^2 y}{dx^2}$ is equal to
(A) $-y$ (B) y (C) $25y$ (D) $9y$

18 Let
$$f(x) = [x]$$
 where $[x]$ is the greatest integer less than or equal to x . Then $Rf'(1) =$
(A) 0 (B) 1 (C) -1 (D) not defined

Assertion and Reasoning questions: In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true and R is not the correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.

19 Assertion:
$$Sec^{-1}(-2) = \frac{2\pi}{3}$$
.
Reason: $sec^{-1}: A \to B$ where $A = R - (-1,1)$ and $B = \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

20 Assertion: If $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$ then $A^{-1} = \begin{bmatrix} 9 & -2 \\ -4 & 1 \end{bmatrix}$ Reason: For $A = \begin{bmatrix} a & c \\ d & b \end{bmatrix}$ then $adj A = \begin{bmatrix} -a & d \\ c & -b \end{bmatrix}$

SECTION – B

21 Find the value of
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left(\sin\left(-\frac{\pi}{2}\right)\right)$$

OR

Find the domain of the function $f: R \to R$ defined by $f(x) = \sqrt{x^2 - 3x + 2}$.

- 22 If $y = \sqrt{\sin x + y}$ then find $\frac{dy}{dx}$.
- Find two numbers whose sum is 24 and whose product is as large as possible.
- 24 Find the value of x for which

$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$

25 Find the matrix X so that

$$X\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix} = \begin{bmatrix}-7&-8&-9\\2&4&6\end{bmatrix}$$
$$\mathbf{OR}$$

Without computing *adj* A, find the value of |adj A| if $A = \begin{bmatrix} -2 & 0 & 0 \\ 3 & 4 & 0 \\ 10 & -7 & 3 \end{bmatrix}$

SECTION - C

26 If
$$x = 2\cos t - \cos 2t$$
 and $y = 2\sin t - \sin 2t$ then find $\frac{dy}{dx}$.

Find
$$\frac{dy}{dx}$$
 for the function $y = \sin^{-1}\left(\frac{5x+12\sqrt{1-x^2}}{13}\right)$

27 Solve the following linear equations using matrix method:

$$x - y + z = 4$$
; $2x + y - 3z = 0$ and $x + y + z = 2$
OR

OR

Prove that the determinant is independent of θ :

	$\sin heta$	$\cos\theta$
$-\sin\theta$	-x	1
$\cos\theta$	1	x

Find X and Y if 28

$$2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$$
 and $3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$

- Check the continuity and differentiability of the function f(x) = |x 2| at x = 2. 29
- It is given that at x = 1, the function $x^4 62x^2 + ax + 9$ attains its maximum value, on 30 the interval [0, 2]. Find the value of a.
- Show that the relation R on the set Z of all integers defined by 31 $\{(x, y) \in R \iff (x - y) \text{ is divisible by } 3\}$

is an equivalence relation.

SECTION - D

Show that the altitude of the right circular cone of maximum volume that can be inscribed in 32 a sphere of radius r is $\frac{4r}{2}$

OR

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

- If $\cos y = x \cos(a + y)$ where $\cos a \neq \pm 1$ then prove that 33 $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$
- If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 5A + 7I = 0$ 34 OR

Express the following matrix as the sum of a symmetric and a skew symmetric matrix:

6	-2	2]
-2	3	-1
2	-1	3]

Prove that the function $f: N \to N$ is defined by $f(x) = x^2 + x + 1$ is injective but not 35 Surjective. Find the value of $f^{-1}(3)$?

- 36 Bharat wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that:
 - (i) If its length is decreased by 50 m and breadth is increased by 50 m, then its area will remain same.
 - (ii) If its length is decreased by 10 m and breadth is decreased by 20m, then its area will decrease by $5300m^2$.
- 36a Assume that the length and breadth of the land be x and y (in metres) respectively. Find the equations in terms of x and y.
- 36b Using matrices, represent the linear equations obtained above in 36a.
- 36c Using matrices, determine the dimensions of the land. Also find the area of the plot of the land.

OR

What is a singular matrix?

- Following is the pictorial description of a particular page, selected by a school administration. The total area of the page is $150 \ cm^2$ The combined width of the margin at the top and bottom is 3 cm and the side 2 cm. Using the information given above, answer the following:
- 37a Find the relation between x and y
- 37b Find the area of the page where printing can be done.
- 37c for what value of x, the printable area of the page is maximum? Use derivatives.

What is the area of the printed region?

38 Inverse trigonometric functions:

Find the value of $sin^{-1}(sin 4) = ?$

 $\operatorname{Sin}(\sin^{-1}x) = x$ where $-1 \le x \le 1$ and $\sin^{-1}(\sin y) = y$ where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

OR

- 38b Find the value of $sin^{-1}(\sin 12) cos^{-1}(\cos 12) =$?
- 38c Find the value of $\cos^{-1}\left(-\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$

38a

OR Find the principal value of $sec^{-1}(2)$

