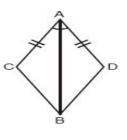
entre entre

BK BIRLA CENTRE FOR DUCATION

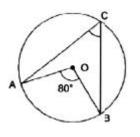
SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PERODIC TEST-2 (2024)

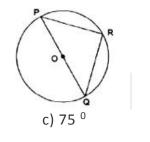

MATHEMATICS

Class : IX Date : 02-12-2024 Admission No.: Duration : 1 Hr Max. Marks : **25** Roll No.:

5


General Instructions:

- 1. All Questions are compulsory.
- 2. There are 13 questions.
- 1. CHOOSE THE CORRECT ALTERNATIVE IN THE FOLLOWING.
- 1. In the given figure, the congruency rule used in proving $\Delta ACB \cong \Delta ADB$ is

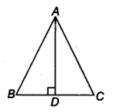

a) ASA	b) SAS	c) AAS	d) RHS

- 2. In $\triangle ABC$, BC = AB and $\angle B = 80^{\circ}$. Then $\angle A$ is equal to : a) 80° b) 40° c) 50° d) 100°
- 3. if O is the centre of a circle, then the measure of $\angle ACB$ is:

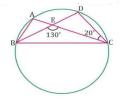
a) 80°	b) 100°	c) 40°	d) 60°
--------	---------	--------	--------

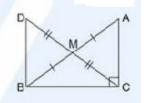
- 4. The sum of either pair of opposite angles of a cyclic quadrilateral is :
 a) 180[°]
 b) 360[°]
 c) 90[°]
 d) 45[°]
- 5. O is the centre of the circle and PR = QR. The measure of \angle PQR is :

d) 45⁰

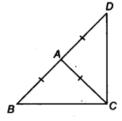

2

2


- a) 60 ⁰ b) 110 ⁰ II. SOLVE THE FOLLOWING
- AD and BC are equal perpendiculars to a line segment AB (see figure). Show that CD bisects AB.

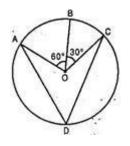

7. In \triangle ABC, AD is the perpendicular bisector of BC (see figure). Show that \triangle ABC is an isosceles triangle in which AB = AC. **2**

- 8. Prove that Equal chords of a circle subtend Equal angles at the centre.
- 9. A, B, C and D are four points on a circle. AC and BD intersect at a point E such that \angle BEC = 130 ° and \angle ECD = 20 °. Find \angle BDC. **2**



10. In right triangle ABC, right angled at C, M is the mid point of hypotenuse AB. C is joined to M and produced to a point D. DM = CM (Refer the figure) Show that i) Δ AMC $\cong \Delta$ BMD. Ii) \angle DBC is right angle. 3

CL_9-PERIODIC TEST-2_MATH_QP_2/3


11. \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure). Show that \angle BCD is a right angle. **3**

- 12. Prove that the perpendicular from the centre of a circle to a chord bisects the chord.
- 13. A , B and C are three points on a circle with centre O . \angle BOC = 30 ⁰ and \angle AOB = 60 ⁰. D is a point on the circle. Find \angle ADC.

3

3

CL_9-PERIODIC TEST-2_MATH_QP_4/ 3