

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PERIODIC TEST-2 (2024-25)

MATHEMATICS (041)

Duration: 1 Hour Max. Marks: 25

Class: XI Science Date: 02/12/24

Marking Key

General Instructions:

Question 1 to 5 carries ONE mark each. Questions 6 to 9 carries TWO marks each. Questions 10 to 13 carries THREE marks each.

1	The value of ${}^{14}C_1 + {}^{14}C_3 + {}^{14}C_5 + \ldots + {}^{14}C_{11}$ is			
	(A) 2^{14} -1	(B) 2^{14} -14	(C) 2^{12}	(D) 2 ¹³ -14
2	The number of terms in the expansion of $[(2x + y^3)^4]^7$ is			
	(A) 28	(B) 29	(C)30	(D) 27
3	Write the first three terms of the sequence whose general term is given by $a_n = 2n+5$.			
	(A) 1, 3, 5	(B) 2, 4, 6	(C) 7,9,11	(D) 6,8,10
4	What is the 2 nd term of the sequence defined by $a_n = \frac{n(n+1)^2}{3}$			
	(A)2	(B)3	(C) 4	(D) 5

Assertion and Reasoning questions: In the following two questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

(A) Both A and R are true and R is the correct explanation of A.

- (B) Both A and R are true and R is not the correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.

5 Assertion (A): The number of terms in $(1+x^2+2x)^{20}$ is 41. Reason (R): The number of terms in the expansion of $(a+b)^x$ is x+1.

6 Find the largest coefficient in the expansion of $(1+x)^{30}$.

Ans: In the expansion of $(1+x)^n$ the largest coefficient is ${}^{n}C_{n/2}$

$^{30}\mathrm{C}_{15}$ is the largest coefficient of $(1{+}x)^{30}.$

7 Which term is greater $(1.2)^{400}$ or 800.

Ans: $(1.2)^{400} = (1+0.2)^{400} = 1+400(0.2) + 3129 +$ other positive terms which is greater than 800

Therefore, $(1.2)^{400}$ is greater than 800

- 8 Let the sequence a_n be defined as follows: $a_1 = 1$, $a_n = a_{n-1} + 2$ for $n \ge 2$. Find first term and write corresponding series.
- Ans: $a_1 = 1$, $a_2 = 3$, $a_3 = 5$, $a_4 = 7$, $a_5 = 9$.
- 9 Find the sum of first 8 terms of the G.P. 10, $5,\frac{5}{2}, \dots$.

Ans:
$$a=10, r=\frac{1}{2}, s_n = a\left(\frac{1-r^n}{1-r}\right), \text{ therefore, } S_8 = 10\left[\frac{1-\left(\frac{1}{2}\right)^8}{1-\frac{1}{2}}\right] = 10(1-\frac{1}{2^8}).$$

10 Simplify $(x+2y)^8 + (x-2y)^8$.

Ans:
$$(x+2y)^8 + (x-2y)^8 = 2[x^8 + 28x^6x^4y^2 + 70x^416y^4 + 28x^2x^64y^2 + 256y^8]$$

= $2[x^8 + 112x^6y^2 + 1120x^4y^4 + 1792x^2y^6 + 256y^8]$

11 Prove that $(\sqrt{3}+\sqrt{2})^6 + (\sqrt{3}-\sqrt{2})^6 = 970$.

Ans:
$$\sqrt{3} + \sqrt{2} = 2 \left[1 \cdot 3^3 + \frac{6x5}{2x1} \cdot 3^2 \cdot 2 + \frac{6x5}{2x1} \cdot 3 \cdot 2^2 + 1 \cdot 2^3 \right]$$

= $2 \left[27 + 270 + 180 + 8 \right]$
= $2 (485)$
= 970

- 12 In a G.P. of positive terms, if any term is equal to the sum of the next two terms, then find the common ratio of the G.P.
- Ans: $a_n = a_{n+1} + a_{n+2}$

$$1=r+r^2$$
, $r^2+r-1=0$, $r=\frac{\sqrt{5}-1}{2}$.

- 13 The product of the first three terms of a G.P. is 1000.If we add 6 to its second term and 7 to its third term, the resulting three terms form an A.P. Find the terms of the G.P.
- Ans: Three terms in G. P are $\frac{a}{r}$, a, ar

Here, a/r.a.ar = 1000, $a^3 = 1000$, $a = \sqrt[3]{1000}$, a = 10

According to question; $\frac{a}{r}$, a+6, ar+7, $\frac{10}{r}$, 16, 10r+7 are in A.P

$$2(16) = \frac{10}{r} + 10r + 7, 2r^2 - 5r + 2 = 0, r = 2 \text{ or } \frac{1}{2}$$